XMI based UML processing in KobrA
(Position Paper)

Joanna Filipek and Marko Fabiunke
Institute for Computer Architecture and Software Technology
German National Research Center for Information Technology
Kekuléstrafie 7, 12489 Berlin, Germany

Abstract KobrA is the name of a project concerned with the development of a truly component-based
software development method as well as tools and technologies supporting this method. Different to other
component technologies, KobrA components cover the complete development life-cycle, hence KobrA com-
ponents are not only "binary” modules, but come along with a complete set of descriptions notable with
their own UML model. Since a software system usually consists of several components, the management of
UML models and their inter-relationships, dependencies and constraints plays an important role within the
technological part of the KobrA project. This paper gives a glimpse of the work in progress concerning the
handling and interpretation of UML models within KobrA.

1 Introduction

The software industry is currently pinning its hopes for future software productivity, quality and
maintainability gains on component-based software engineering (CBSE). However, there is less
consensus about what precisely a component is and how it should be applied in practical soft-
ware development scenarios. One point most contemporary component technologies (e.g. DCOM,
CORBA, JavaBeans) agree on is that components are binary, ready-to-run software items that can
be deployed immediately without recourse to the edit/compile/link cycle of traditional software
technologies. Therefore, the component paradigm has so far only penetrated the ”implementation”
phase of the software life-cycle, and does not yet play a major role in the earlier analysis and design
activities of large software projects. As a result, many of the potential benefits of CBSE are not
fully realized in practical software development settings.

The KobrA project addresses this problem by making components the focus of the entire soft-
ware development life-cycle, not just the implementation and deployment activities, and by adopting
a product-line strategy for their creation, maintenance and deployment. The resulting approach
augments the typical ”binary-module” view of components with a full, UML-based representation
of their characteristics and relationships. In KobrA components are described by a combination
of UML diagrams and textual documents at a level of abstraction akin to analysis and design in
traditional approaches. This allows the essential structure and behavior of component-based sys-
tems to be described in a way that is independent of (but compatible with) specific component
technologies.

The aim of the KobrA project is the development of a truly component-based software develop-
ment method covering the complete development life-cycle, as well as techniques and technologies
supporting this method, the later eventually resulting in the construction of a workbench enabling
users to use the KobrA method by providing method specific tools to manage and guide the KobrA
development process as well as the developed products. Since the UML plays an important and sig-
nificant role in the KobrA method, many of the technological problems deal with UML processing,



hence much work in KobrA has been placed around the interpretation, manipulation and trans-
formation of UML models from the KobrA component point of view. This paper focuses on the
later questions rather than to give a complete description of the KobrA project. More informations
about the KobrA project can be found in [1, 2].

The KobrA project is funded by the German Ministry for Research and Education (BMBF)
and is being conducted by four partners, two industrial companies and two research organizations.
Those are: Softlab GmbH, Munich (project coordinator), Psipenta GmbH, Berlin, Fraunhofer IESE,
Kaiserslautern and GMD FIRST, Berlin.

2 Artifacts

The central artifact in KobrA is the K(obrA)-component (or Komponent). Like other components,
a Komponent is a logically self-contained package of functionality, with well-defined interfaces, that
can be readily combined with other components to create larger units (components). The main
difference between KobrA components and regular components is that they are described by a
combination of UML-diagrams and textual documents at a level of abstraction akin to traditional
analysis/design. Binary representations of components are still available, but only as one specific
incarnation of Komponents.

The description of a Komponent is split into two main parts: the specification, which describes
the externally visible characteristics of the Komponent and thus defines the ”requirements” which it
is expected to meet, and the realization which describes how the Komponent satisfies these require-
ments in terms of interactions with other Komponents and, therefore, captures the architecture
(or design) of the Komponent. The specification of a Komponent describes its externally visible
properties primarily in terms of UML class and object diagrams, UML structural diagrams and
textual operation specifications. The realization of a Komponent primarily extends these descri-
pions in terms of more detailed UML class and object diagrams, UML interaction diagrams and
UML activity diagrams. Well-defined inter-model consistency and realization relationships ensure
the quality of the Komponent.

In essence KobrA views (and treats) a Komponent as a system in their own right. If it makes
sense, a Komponent can be executed as a system on its own. However, in most cases it will be
combined with others to define a larger more powerful system (i.e. Komponent).

KobrA distinguishes between two such systems, KobrA frameworks and KobrA applications.
Basically, a framework provides a generic description of the software elements making up a family
of applications. In contrast with most other approaches, a KobrA framework embodies all con-
crete variants of a family, not just the common parts. This is achieved by capturing all possible
features within the framework and using decision models to describe the choices that distinguish
distinct members (i.e. applications) of the family. A KobrA framework is a tree-structured hi-
erarchy of Komponents, in which the parent/child relationship represents composition (a parent
is composed-of its children). The involved Komponent specifications and realizations are inter-
related by carefully controlled consistency, trace-ability and realization relationships. Komponents
are called to be generic, when they describe all the features of a family of Komponents under the
control of a decision model, they are concrete, when only the properties of a member of the family
are defined.

3 Method

The KobrA Method defines the products and processes involved in creating and applying a frame-
work of KobrA Komponents. The method is based on the fundamental principle of cleanly sep-
arating the product from the process, and also of separating concerns within development and
maintenance. The result is a method that is highly-architecture centric, incremental and scalable.



Since the method adopts the product-line philosophy, the first major activity is the creation
of a reusable framework which, in KobrA, is a tree-shaped hierarchy of Komponents, organized in
terms of the composition relationship. As a product, a KobrA framework is regarded as being in
a consistent state when all the consistency, realization and contract relationships have been fully
validated and quality controlled. The Framework engineering activity is a highly recursive process,
which applies the same basic set of techniques to all Komponents, regardless of their granularity
or their position in the composition hierarchy. Once complete, a framework can be instantiated to
provide specific applications, tailored to the needs of specific customers. The result is an application
with the same form and structure as the framework, but with all genericity and unrequired features
removed. The application can then be transformed into an equivalent implementation that contains
the source code for automated compilation tools.

4 Workbench

For industrial software development the KobrA method should be supported by a set of specially
developed tools and technologies to guide and manage the process of Komponent development.
Therefore, the KobrA project also works on a repository based software development platform
known as the KobrA workbench. The workbench consists of three main parts, the KobrA Kompo-
nent repository, the Komponent manager and the Komponent desk.

The repository is the heart of the workbench and used to store and manage all created artifacts
of the KobrA method. It is based on the commercial product ”Enabler” developed by Softlab,
one of the industrial partners of the KobrA project. Enabler is an open object repository system
providing support for integrated storage and management of data, flexible and high-performance
access to this data by users and applications, team coordination and version management.

The Kobra manager works on top of the repository and contains all the functionality specific to
the KobrA method and not provided already by the repository. This includes all the consistency
checking mechanisms required by the KobrA method as well as the configuration techniques coming
along with the KobrA decision model.

The KobrA desk is the part of the workbench the user works with. It consists of a set of tools
to create, manipulate and visualize the KobrA artifacts. Some of these tools are standard tools like
text processing tools, UML design tools or those delivered with the Enabler repository product.
Others have been newly developed to help the user to manage and visualize all the KobrA artifacts
and there manifold relations.

5 UML processing

As has been mentioned above, each Komponent is treated as a system in its own and comes along
with two UML models, one for the Komponent specification and one for the Komponent realization.
The realization model can be viewed as an extension of the specification model, since it should
contain (import) the entire specification. On the other hand, the realization of a Komponent may
be achieved by using other Komponents, hence, the realization model needs to know (import) the
specification model of those Komponents (or parts of it). Therefore, all UML models involved in a
framework of Komponents are somehow interrelated to each other. A change in the specification
of some Komponent has an impact (downwards) to its realization model as well as (upwards) to
the realization model of the Komponents using this Komponent.

In theory, KobrA comes along with some well-defined consistency rules that can be evaluated
to validate the consistency between the different UML models within a KobrA framework. Some of
these rules are specific to the KobrA method, e.g. the specification model should contain only one
class having methods (which is the class representing the Komponent). Others simply ensure the
consistency of the shared modeling elements, e.g. the imported UML models of some Komponent



model should not be changeable within that model, but a change in the original model should be
triggered to the importing models. The KobrA method somehow requires a system being able to
manage such a set of interrelated UML models. However, there is currently no (standard) UML
design tool available, supporting this behavior. Moreover, since KobrA defines some additional
constraints with respect to the allowed modeling elements a specification/realization model could
contain, the KobrA system needs access to all the details of an UML model, being able to compare
this model against others or to check the modeling elements within a model.

A possible but simple solution to some of the consistency problems is, to put all Komponent
models into one big model for the whole framework. This has been done as a case study with a
simple banking example system. In that study, each Komponent is mapped to a package within that
model and a class within the package. The package structure mirrors the parent-child relationship
between the Komponents and reflects the fact, that a KobrA Komponent is a class as well as a
subsystem within the entire framework. Importing parts of a package to other packages can be
considered as equivalent to importing a specification of some Komponent to other Komponents.
Navigation through the tree-structure of the framework is therefore the same as navigation through
the package structure.

However, the above approach is somehow against the (ideal) KobrA method. KobrA penetrates
the user with the principle of locality, meaning, the developer/user should only see what he is really
working on. Hence, someone working on the specification or realization of some Komponent should
not need to see the other parts of the framework, except those imported from other Komponent
models. Moreover, this approach does not really separates the specification from the realization of
a Komponent. It always contains the complete (realization) model. Visibility restrictions can only
be obtained by using the model/view concepts of the underlying UML design tool, but have to be
created manually by the user. KobrA specific constraints and consistency rules can also only be
validated by the user, since the UML design tool has no idea about the user developing a KobrA
Komponent.

Although the above ”workaround” can be used for smaller projects, a more KobrA-like solution
is needed for the workbench. This solution has been placed around the usage of the XML-based
Metadata Interchange standard (XMI). XMI has been proposed by the OMG (which is also re-
sponsible for the UML standard) as a standard method for text-based exchange of object-based
data on the base of XML. It is not the only one of XML-based exchange formats, but the one that
is supported by the developers of UML. Moreover, many UML tool providers have proclaimed to
support the exchange of UML models via XMI in future releases of their products. Rational Rose
provides a free plug-in for their UML case tool, allowing the import and export of XMI-based UML
models. TogetherSoft has a build-in support for XMI and the XMI toolkit (from IBM) supports the
transformation of Rational Rose model files to Java source code via the XMI standard. Other firms
have proposed interest in the XMI standard (e.g. Select Enterprise), but have not been coming up
with solutions so far.

In the KobrA workbench scenario, any UML design tool can be used to create and manipulate
the UML models for the KobrA Komponents, since the KobrA repository allows to store (and
manage) any kind of file. However, additional support for the KobrA method (e.g. automatic
consistency checks) can only be incorporated, when the tool is able to (additionally) save their
models on the base of the XMI standard. At present, only the UML 1.1 (and XMI 1.0) standard
are supported, but this will change later on this year to meet the newer standards UML 1.3 and
XMI 1.1. An XMI loader (being part of the KobrA manager) is able to parse the exported XMI
files and creates a detailed representation of the contained model in the KobrA repository. This
representation consists of objects according to the UML meta-model as specified by the UML
standard. Starting from a root object (representing the model itself) any detail of the so stored
model can be obtained by traversing the object attributes as well as the links to other objects.

The so stored models can be used later on to apply any of the consistency checks defined by



the KobrA method. Within the current development phase, such checks have to be implemented
(in Java) by hand, but plans are made to support the OCL language and the execution of any
valid OCL script within the KobrA workbench at a later stage of development. At present, a
Java API for UML models based on the UML standard is under development. This API should
support a standard way to traverse an UML model based on the UML meta-model description.
The standard implementation of that API will work an the stored UML models in the repository,
but implementations based on in-memory representations or accessing a Rational Rose model via
the COM API, provided by the Rational Rose tool, should be possible as well.

One of the interesting point of being able to traverse a UML model within the KobrA repository
is the fact, that this helps to develop the KobrA workbench system itself. Since the UML meta-
model can be described as a UML model, we stored the UML meta-model in our repository first.
Traversing this model allows now the generation of parts of the functionality of the workbench.
The above mentioned UML model API will be generated completely by such a generation tool
currently under development. Moreover, the Enabler data model (used to store KobrA artifacts as
well as UML models) will be generated in the next version out of an XMI file containing the KobrA
meta-model (which is indeed only an extended UML meta-model). Those, we should be able to
adopt the current data model (based on UML 1.1) to new standards (e.g. UML 1.3) without any
reprogramming.

6 Summary

The KobrA approach to component-based software development is based on the idea of making
components to be the focus of the entire software development life-cycle. KobrA Komponents are
therefore not only binary products, but well-designed systems by there own. Each Komponent
comes along with a complete UML model as well as other descriptive documents.

In KobrA a system (framework/application) comes along as a tree of KobrA Komponents with
contract and usage relationships defined between the individual Komponents. Hence, a KobrA
system can be viewed as a system of interrelated UML models. Since none of the currently available
UML tools supports that kind of interrelated UML model management, it has been left to the
KobrA workbench to provide a solution to that problem. The KobrA workbench addresses this
problem by making the XMI exchange standard to be the key technology of processing UML models
(from different sources) within the KobrA workbench. This allows the user to store and analyze
UML models in detail, such that several processing scenarios like inter-model consistency checks,
KobrA-specific model constraint validation as well as the transformation of UML models into other
representations (code, data models) are available. Due to the growing interests by our partners,
the technology will be adopted to other ongoing projects beyond KobrA as well.

References

[1] C. Atkinson, J. Bayer, and D. Muthig. Component-based product line development. the kobra
approach. In Proc. of the 1th Software Product Lines Conference (SPLC1), pages 289-309,
2000.

[2] D. Muthig and J. Bayer. Helping small and medium-sized enterprises in moving towards software
product lines. In Proc. of the Workshop Software Product Lines. Economics, Architectures, and
Implications., pages 98-101, Limerick, 2000.



